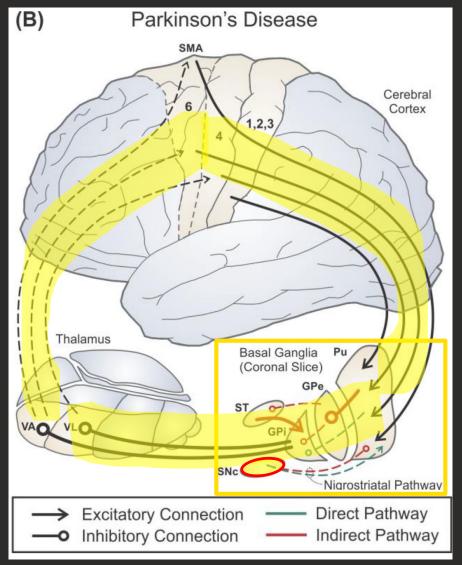


SENSORIMOTOR CONTROL OF PITCH AND FORMANTS IN PATIENTS WITH PARKINSON'S DISEASE AND DEEP BRAIN STIMULATION

Heather Kabakoff, Sarah Lewkowict, Erika Jensen, Caroline A. Niziolek, Alon Mogilner, Michael Pourfar, Adeen Flinker


Boston Speech Motor Control Symposium - June 12, 2025

Introduction

Parkinson's disease (PD)

- ► "Sensorimotor control" of speech: incorporation of sensory feedback into ongoing motor commands. (Guenther, 2016)
- ► The cortico-basal ganglia motor loop is crucial for coordinating timely & precise motor execution.
- ► In PD, reduced dopamine weakens excitation and inhibition within the cortico-basal ganglia motor loop. (Göttlich et al., 2013; Guenther, 2016)
 - ► tremor, rigidity, bradykinesia, postural instability
 - changes in speech

Guenther (2016) Ch. 10

Deep Brain Stimulation (DBS)

- ➤ Surgical implantation of electrodes within cortical-basal ganglia motor loop provides a "virtual lesion" that restores balance.
 - Usually in the subthalamic nucleus (STN)
- ► Increasingly common treatment for general motor symptoms in refractory PD. (Atkinson-Clement et al., 2015)
- ➤ Variable outcomes on speech symptoms. (Skodda et al., 2013)

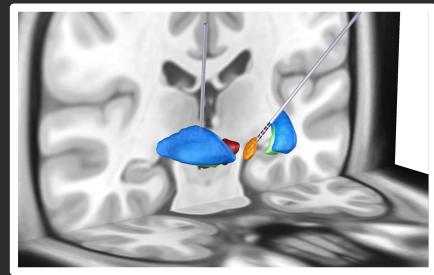
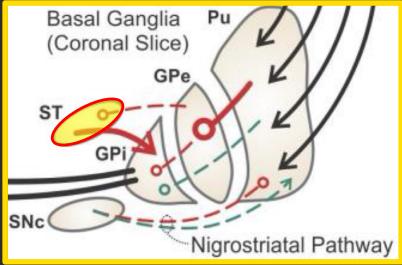
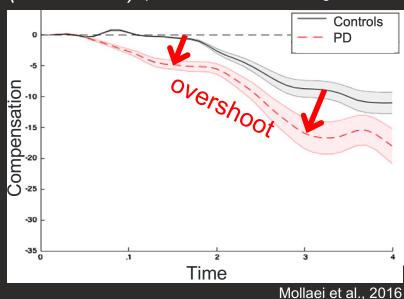



Image property of NYULMC Department of Neurosurgery

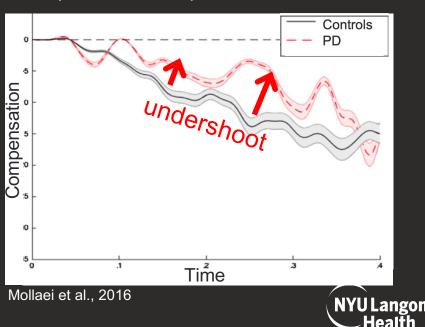
Guenther (2016) Ch. 10

Hypokinetic dysarthria in PD

- ➤ 90% of those with PD develop hypokinetic dysarthria. (Duffy, 2020)
- ➤ Reduced respiratory, phonatory, and articulatory precision leads to slow, effortful, and slurred speech.


 (Darley et al., 1969; Duffy, 2020)
 - ► Reduced intelligibility (Müller et al., 2001; Hartelius & Svensson, 1994)
 - ► Vocal instability (Behroozmand et al., 2019)
 - ► Low pitch variability (Skodda et al., 2013)
 - ➤ Small vowel (articulatory) space (Bang et al., 2013; Skodda et al., 2011)

- ► Although 33% report speech as a major challenge, only 3% seek speech therapy. (Hartelius & Svensson, 1994)
- ► Most therapies target vocal effort (intensity) and require intensive schedules and clinician input. (Atkinson-Clement et al., 2015)
- ► Limited evidence supporting speech therapy for patients with DBS:
 - ► Variable maintenance (Spielman et al., 2011)
 - ► Reduced cognitive capacity for speech rehabilitation (Atkinson-Clement et al., 2015)



Atypical sensorimotor control of speech in PD

- ➤ Speakers typically compensate for pitch/formant perturbations by shifting frequencies in the opposite direction to the perturbation. (Houde & Jordan, 1998; Jones & Munhall, 2005)
- Responses to online perturbations for patients with PD compared to controls:
- Pitch compensation (phonation): Larger (overshoot) (Chen et al., 2013; Huang et al., 2016; Liu et al., 2012)

► Formant compensation (articulation): Smaller (undershoot) (Mollaei et al., 2013)

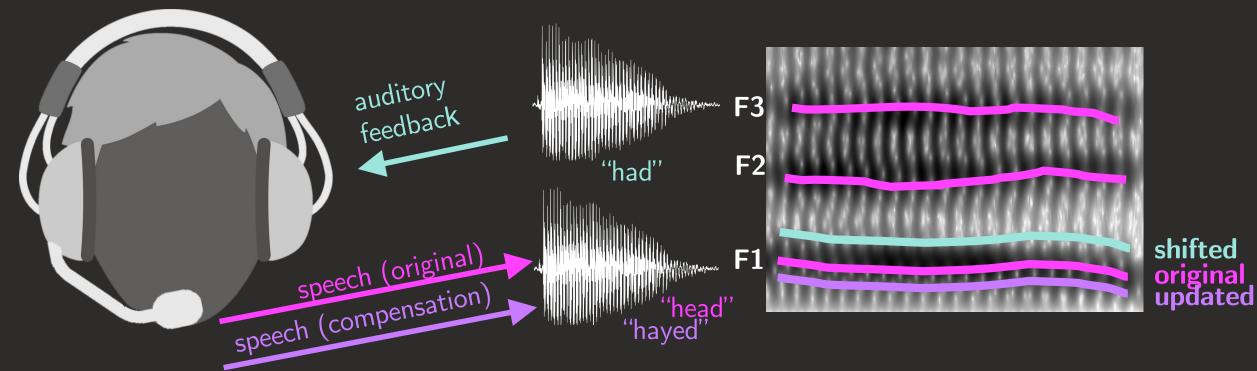
Effects of DBS on sensorimotor control in PD

- ▶ Pitch compensation (phonation): With brief (200ms) pitch perturbations, DBS turned ON has a regulatory effect, reversing previously observed overshoot. (Behroozmand et al., 2019)
 - Correlated with reductions in vocal instability
- ► Formant compensation (articulation):
 No study has investigated whether DBS regulates atypically small response (undershoot) to formant perturbations.
- ► Inconsistent reports on vowel space:
 - ▶ ↓ when DBS turned on (Sidtis et al., 2016)
 - ► ↑ when DBS turned on (Martel-Sauvageau et al., 2014)

Effects of DBS on sensorimotor control in PD

- ► Leverage increasing occurrence of DBS as a novel window into sensorimotor control.
- ► Within-subject comparison of response to *sustained* perturbations affecting voice (pitch) versus articulation (formants) with DBS-STN off and on.
- ▶ Is sensorimotor control within the cortico-basal ganglia motor loop pitch-sensitive?

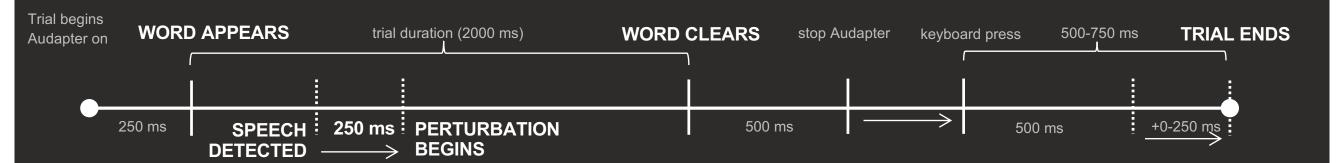
Development of passive perturbation-based treatment tool?



Methods

Perturbation task

► Patients sustained /ε/ with interleaved F0 (±100 cents) or F1 (±125 mels) perturbations. (Behroozmand et al., 2019; Niziolek & Guenther, 2013)



Perturbation task

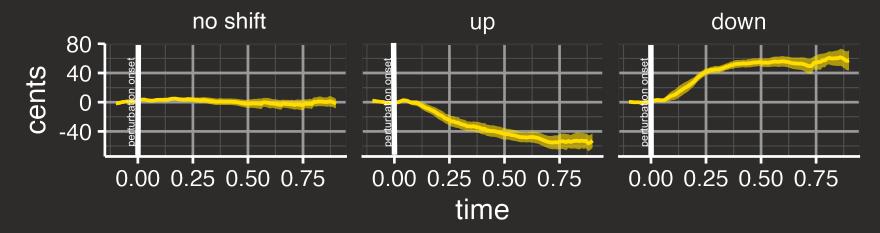
150 trials: condition, word, and direction randomized within each block of 10.

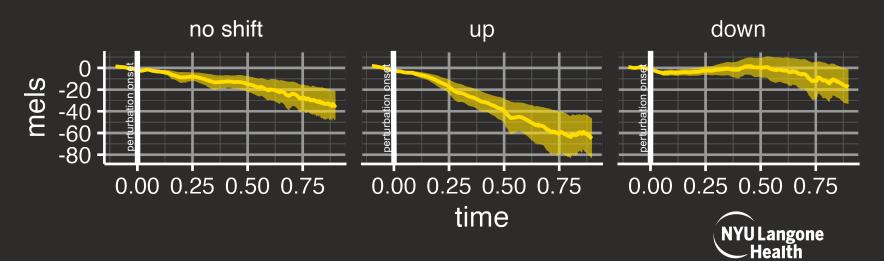
- ► Within-block randomization and within-trial jitter maximize unpredictability of perturbation.
- ► Pink noise on throughout task to maximize reliance on air-conducted feedback.

PD and control groups

- ▶ 23 patients with PD and bilateral DBS-STN
- ▶ 9 healthy controls of comparable age
- ▶ Significantly higher VHI (p < 0.001) in PD compared to control group.

	PD (n = 23)	Control (n = 9)
Age	m = 62.8 sd = 9.2	m = 61.7 sd = 12.9
Gender	3 (13.0%) female	5 (66.7%) female
Voice Handicap Index (VHI)	m = 46.7 $sd = 23.3$	m = 9.3 sd = <i>6.6</i>


Results


Data visualization

- ► From raw Hz signal, we:
 - Convert to cents (pitch) & mels (formant).
 - Calculate compensation relative to 100 ms preperturbation.
- ► Compensation trends:
 - Pitch
 - ► Formant
- Subtract noshift condition from up/down conditions to show relative compensation patterns.

Control group compensation to pitch shift

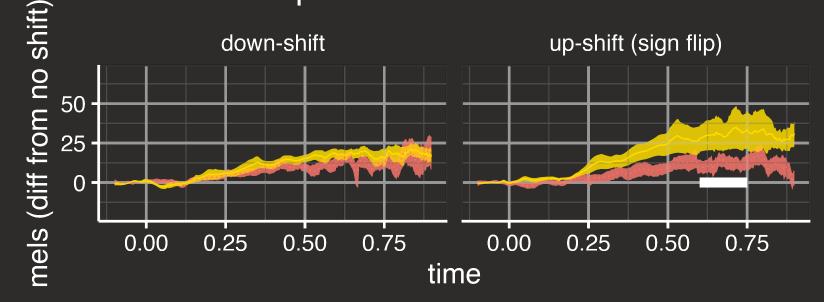
Control group compensation to formant shift

Pitch

- ➤ Controls:
 - More likely to be compensators.
- Comparison with PD (DBS OFF):
 - **▶** Down:
 - ➤ Specific window: 250-450 ms
 - ► Up:
 - Specific window: 200-350 ms; 400-900ms

group	direction	compensators
control	down	100% (9/9)
PD	down	82.6% (38/46)
control	up	100% (9/9)
PD	up	69.6% (32/46)

Pitch: compensation in PD relative to controls

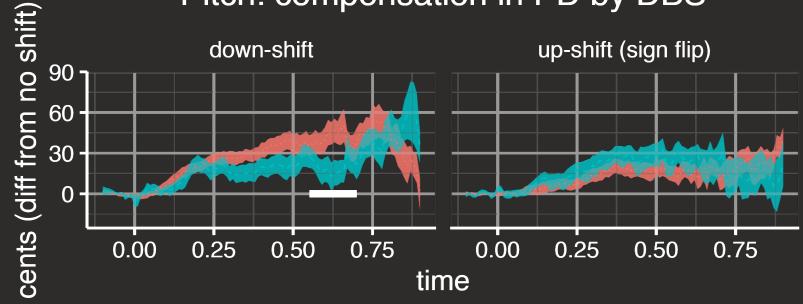


Formant

- ➤ Controls:
 - More likely to be compensators.
- Comparison with PD (DBS OFF):
 - **▶** Down:
 - ▶ No difference
 - ► Up:
 - ► Specific window: 600-750 ms

group	direction	compensators
control	down	88.9% (8/9)
PD	down	69.6% (32/46)
control	up	88.9% (8/9)
PD	up	76.1% (35/46)

Formant: compensation in PD relative to controls

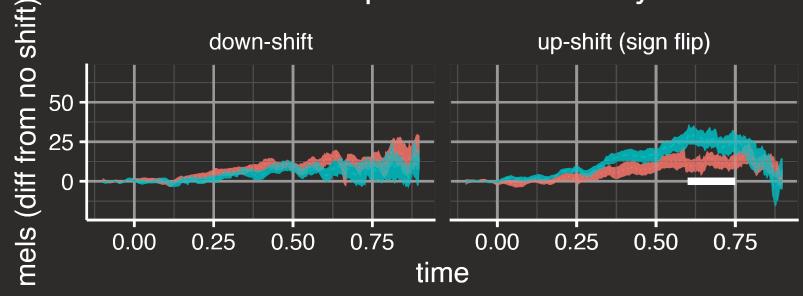


Pitch

- ▶ DBS ON vs OFF:
 - No clear pattern of compensators
- ► Comparison within PD (ON vs OFF):
 - ► Down:
 - ► Specific window: 550-700 ms
 - ► Up:
 - No difference

DBS	direction	compensators
OFF	down	91.3% (21/23)
ON	down	73.9% (17/23)
OFF	up	65.2% (15/23)
ON	up	73.9% (17/23)

Pitch: compensation in PD by DBS

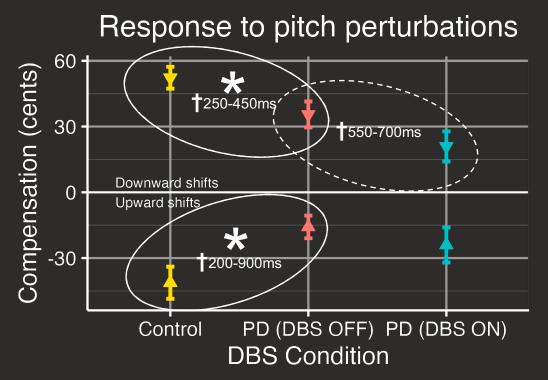


Formant

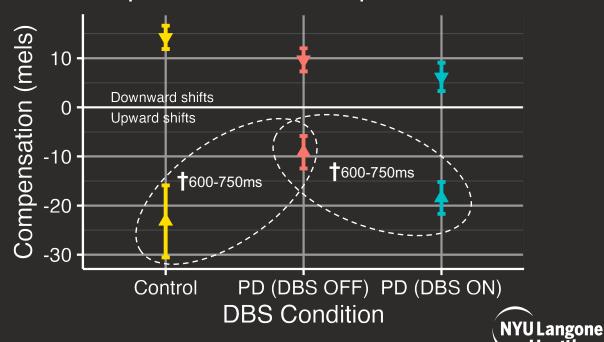
- ▶ DBS ON vs OFF:
 - No clear pattern of compensators.
- ► Comparison within PD (ON vs OFF):
 - ► Down:
 - ▶ No difference
 - ► Up:
 - ► Specific window: 600-750 ms

DBS	direction	compensators
OFF	down	73.9% (17/23)
ON	down	65.2% (15/23)
OFF	up	69.6% (16/23)
ON	up	82.6% (19/23)

Formant: compensation in PD by DBS

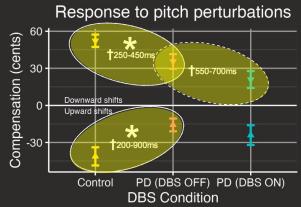


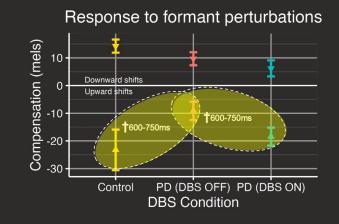
Discussion



Summary of patterns

- ▶ Plots show window from 250-750 ms post-stimulation onset.
 - ➤ Significance based on small-window tests (†)
 - Significance based on large-window tests (*)




Response to formant perturbations

Conclusion

- Patients with PD showed lower compensation than controls, suggesting compensatory undershoot.
 - Pitch: Robust difference for up- and down-shifts
 - ► Formant: Difference for up-shifts
- ► For patients with PD, turning DBS on leads to divergent changes for pitch vs. formants.
 - ▶ **Pitch**: already low compensation *reduced* more with DBS on [down-shift]
 - ► Formant: already low compensation *increased* closer to control levels with DBS on [up-shift]
- ➤ This pattern suggests that the cortical-basal ganglia motor circuit also regulates formant modulation, providing novel evidence for shared pathways for online modulation of laryngeal structures controlling pitch and articulatory structures controlling formants.

Clinical impact

- ► Perioperative care: Associate compensation patterns with individual patient characteristics, including disease factors, stimulation settings, and neural target.
 - ▶ Predicting which speech subsystems are likely to weaken will improve perioperative counseling.
- ► Functional outcomes: Compare compensation patterns with functional voice/articulation (voice quality, intelligibility) measures.
 - ▶ Identify real-world impact of sensorimotor challenges on communication.
- ► Therapy tool: sustained formant perturbation as a method of increasing vowel space
 - ► Applications toward a range of motor speech disorders: apraxia, stuttering, and other dysarthrias

References 1

- Abur, D., Enos, N. M., & Stepp, C. E. (2019). Visual analog scale ratings and orthographic transcription measures of sentence intelligibility in Parkinson's disease with variable listener exposure. *American Journal of Speech-Language Pathology*, 28(3), 1222-1232. https://doi.org/10.1044/2019_AJSLP-18-0275
- Atkinson-Clement, C., Sadat, J., & Pinto, S. (2015). Behavioral treatments for speech in Parkinson's disease: meta-analyses and review of the literature. *Neurodegenerative Disease Management*, 5(3), 233-248. https://doi.org/10.2217/nmt.15.16
- Bang, Y.-I., Min, K., Sohn, Y. H., & Cho, S.-R. (2013). Acoustic characteristics of vowel sounds in patients with Parkinson disease. *NeuroRehabilitation*, 32(3), 649-654. https://doi.org/10.3233/NRE-130887
- Behroozmand, R., Johari, K., Kelley, R. M., Kapnoula, E. C., Narayanan, N. S., & Greenlee, J. D. (2019). Effect of deep brain stimulation on vocal motor control mechanisms in Parkinson's disease. *Parkinsonism & Related Disorders*, 63, 46-53. https://doi.org/10.1016/j.parkreldis.2019.03.002
- Behroozmand, R., Shebek, R., Hansen, D. R., Oya, H., Robin, D. A., Howard III, M. A., & Greenlee, J. D. (2015). Sensory–motor networks involved in speech production and motor control: An fMRI study. *Neuroimage*, 109, 418-428. https://doi.org/10.1016/j.neuroimage.2015.01.040
- Chen, X., Zhu, X., Wang, E. Q., Chen, L., Li, W., Chen, Z., & Liu, H. (2013). Sensorimotor control of vocal pitch production in Parkinson's disease. *Brain Research*, 1527, 99-107. https://doi.org/10.1016/j.brainres.2013.06.030
- Darley, F. L., Aronson, A. E., & Brown, J. R. (1969). Differential diagnostic patterns of dysarthria. *Journal of Speech and Hearing Research*, 12(2), 246-269. https://doi.org/10.1044/jshr.1202.246
- Duffy, J. R. (2020). Motor Speech Disorders: Substrates, Differential Diagnosis, and Management (4th ed.). Elsevier.
- Göttlich, M., Münte, T. F., Heldmann, M., Kasten, M., Hagenah, J., & Krämer, U. M. (2013). Altered resting state brain networks in Parkinson's disease. *PloS One*, 8(10: e77336), 1-13. https://doi.org/10.1371/journal.pone.0077336
- Guenther, F. H. (2016). Neural Control of Speech. Massachusetts Institute of Technology Press. https://mitpress.mit.edu/books/neural-control-speech
- Hartelius, L., & Svensson, P. (1994). Speech and swallowing symptoms associated with Parkinson's disease and multiple sclerosis: a survey. *Folia Phoniatrica et Logopaedica*, 46(1), 9-17. https://doi.org/10.1159/000266286
- Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in speech production. Science, 279(5354), 1213-1216. https://doi.org/10.1126/science.279.5354.1213
- Huang, X., Chen, X., Yan, N., Jones, J. A., Wang, E. Q., Chen, L., Guo, Z., Li, W., Liu, P., & Liu, H. (2016). The impact of Parkinson's disease on the cortical mechanisms that support auditory–motor integration for voice control. *Human Brain Mapping*, 37(12), 4248-4261. https://doi.org/10.1002/hbm.23306
- Jones, J. A., & Munhall, K. G. (2005). Remapping auditory-motor representations in voice production. Current Biology, 15(19), 1768-1772. https://doi.org/10.1016/j.cub.2005.08.063
- Knowles, T., Adams, S., Abeyesekera, A., Mancinelli, C., Gilmore, G., & Jog, M. (2018). Deep brain stimulation of the subthalamic nucleus parameter optimization for vowel acoustics and speech intelligibility in Parkinson's disease. *Journal of Speech, Language, and Hearing Research*, 61(3), 510-524. https://doi.org/10.1044/2017_JSLHR-S-17_0150_Language

References 2

- Lam, J., & Tjaden, K. (2016). Clear speech variants: An acoustic study in Parkinson's disease. *Journal of Speech, Language, and Hearing Research*, 59(4), 631-646. https://doi.org/10.1044/2015 JSLHR-S-15-0216
- Liu, H., Wang, E. Q., Metman, L. V., & Larson, C. R. (2012). Vocal responses to perturbations in voice auditory feedback in individuals with Parkinson's disease. *PloS One*, 7(3: e33629), 1-10. https://doi.org/10.1371/journal.pone.0033629
- Martel-Sauvageau, V., Macoir, J., Langlois, M., Prud'Homme, M., Cantin, L., & Roy, J. (2014). Changes in vowel articulation with subthalamic nucleus deep brain stimulation in dysarthric speakers with Parkinson's disease. *Parkinson's Disease*, 2014(487035), 1-9. https://doi.org/10.1155/2014/487035
- Mollaei, F., Shiller, D. M., Baum, S. R., & Gracco, V. L. (2016). Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease. *Brain Research*, 1646, 269-277. https://doi.org/10.1016/j.brainres.2016.06.013
- Mollaei, F., Shiller, D. M., & Gracco, V. L. (2013). Sensorimotor adaptation of speech in Parkinson's disease. Movement Disorders, 28(12), 1668-1674. https://doi.org/10.1002/mds.25588
- Müller, J., Wenning, G. K., Verny, M., McKee, A., Chaudhuri, K. R., Jellinger, K., Poewe, W., & Litvan, I. (2001). Progression of dysarthria and dysphagia in postmortem-confirmed parkinsonian disorders. *Archives of Neurology*, 58(2), 259-264. https://doi.org/10.1001/archneur.58.2.259
- NINDS. (2015). Parkinson's Disease: Challenges, Progress, and Promise. 15-5595.
- Niziolek, C. A., & Guenther, F. H. (2013). Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations. *Journal of Neuroscience*, *33*(29), 12090-12098. https://doi.org/10.1523/JNEUROSCI.1008-13.2013
- Patel, R. R., Awan, S. N., Barkmeier-Kraemer, J., Courey, M., Deliyski, D., Eadie, T., Paul, D., Švec, J. G., & Hillman, R. (2018). Recommended protocols for instrumental assessment of voice: American Speech-Language-Hearing Association expert panel to develop a protocol for instrumental assessment of vocal function. *American Journal of Speech-Language Pathology*, 27(3), 887-905. https://doi.org/10.1044/2018 AJSLP-17-0009
- Sidtis, J. J., Alken, A. G., Tagliati, M., Alterman, R., & Van Lancker Sidtis, D. (2016). Subthalamic stimulation reduces vowel space at the initiation of sustained production: Implications for articulatory motor control in Parkinson's disease. *Journal of Parkinson's Disease*, 6(2), 361-370. https://doi.org/10.3233/JPD-150739
- Skodda, S., Grönheit, W., Mancinelli, N., & Schlegel, U. (2013). Progression of voice and speech impairment in the course of Parkinson's disease: a longitudinal study. *Parkinson's Disease*, 2013(389195), 1-8. https://doi.org/10.1155/2013/389195
- Skodda, S., Visser, W., & Schlegel, U. (2011). Vowel articulation in Parkinson's disease. *Journal of Voice*, 25(4), 467-472. https://doi.org/10.3233/NRE-130887
- Spielman, J., Mahler, L., Halpern, A., Gilley, P., Klepitskaya, O., & Ramig, L. (2011). Intensive voice treatment (LSVT® LOUD) for Parkinson's disease following deep brain stimulation of the subthalamic nucleus. *Journal of Communication Disorders*, 44(6), 688-700. https://doi.org/10.1016/j.jcomdis.2011.05.003
- Stipancic, K. L., Tjaden, K., & Wilding, G. (2016). Comparison of intelligibility measures for adults with Parkinson's disease, adults with multiple sclerosis, and healthy controls. *Journal of Speech, Language, and Hearing Research*, 59(2), 230-238. https://doi.org/10.1044/2015_JSLHR-S-15-0271

Thank you Flinker Lab!

NIDCD F32DC021094 (PI: H. Kabakoff) NINDS R01NS109367 (PI: A. Flinker) NINDS R01NS115929 (PI: A. Flinker) NIDCD R01DC018805 (PI: A. Flinker)

Adeen Flinker, PhD

Erika Jensen, Coordinator

Sarah Lewkowict, Research Assistant

http://heatherkabakoff.com http://flinkerlab.org

Adam Morgan, PhD

Amir Khalilian-Gourtani, PhD

Alia Seedat, Coordinator

Jay Jeschke, Coordinator

Leyao Yu, PhD student

Yasamin Esmaeili, PhD student

Faxin Zhao, PhD student

Eva Luna Muñoz Vidal, PhD student

Audrey Chang, MD/PhD student

