PERCEPT-US: A MULTIMODAL AMERICAN ENGLISH CHILD SPEECH CORPUS SPECIALIZED FOR ARTICULATORY FEEDBACK

Amanda Eads¹; Heather Kabakoff²; Nina Benway³; Elaine Hitchcock⁴; Jonathan L. Preston⁵; Tara McAllister¹

NYU Grossman School of Medicine

MONTCLAIR STATE UNIVERSITY

Syracuse University

INTRODUCTION

- Speech Sound Disorder (SSD) can cause lasting academic and social challenges^[1-3].
- Speech-language pathologists' (SLPs) large caseloads make it difficult to fully remediate SSD

 [4-5].
 - Al tools to extend SLP services could improve outcomes.
- Residual /1/ distortions are common due to articulatory complexity^[1].
 - /ɹ/ productions as accurate or inaccurate.Clinically, we also want to provide tongue shape

Current AI tools, e.g., PERCEPT^[6,19], can classify

- and articulatory cueing support.
 Tongue shapes for American English /u/ sound alike^[7] but differ in higher formants (lower for
- We present the PERCEPT-US corpus—audio and ultrasound of /ı/— aiming to infer tongue shapes from acoustics to support clinical cueing.

DATA COLLECTION

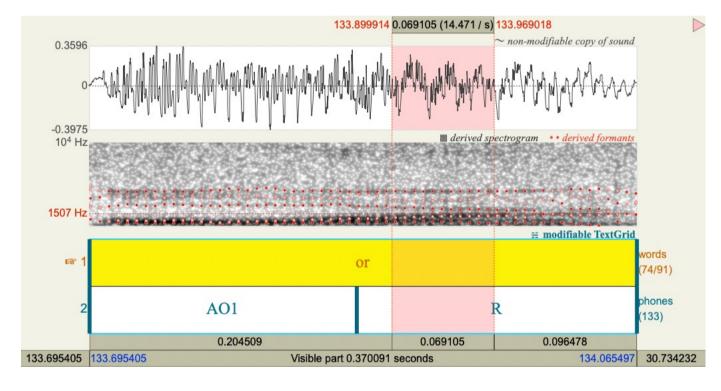
Table 1: Children in the PERCEPT-US corpus

	Children with RSSD	Children without RSSD
Number of children	46	80
Females, Males	17, 29	41, 39
Mean age (SD)	10;7 (1;5)	12;7 (2;3)
Age range (yrs; mos)	9;0 - 14;8	8;8 - 17;8

Table 2: Speech production tasks with counts of participants and utterance counts in parentheses. Word-TSC represents the tongue shape complexity task and Word-MP represents the minimal pair task.

Speech Production Task	Children with RSSD	Children without RSSD
Syllable	39 (3240)	77 (3465)
Word - /1/	46 (4000)	78 (3900)
Word - $/s$, $z/$	13 (754)	40 (2320)
Word - TSC	34 (1675)	38 (950)
Word - MP	13 (936)	41 (2952)
Sentence	13 (65)	78 (390)
Total Utterances:	10,670	13,977

- IRB-approved data collection at Haskins Labs,
 NYU, Montclair State U, and Syracuse U.
- Audio and midsagittal ultrasound were recorded simultaneously.
- 126 participants (mean age = 11;10, range = 8;8–17;8; 58 female, 68 male).
- Similar in age, American English rhotic dialect, and absence of speech-language-hearing differences other than residual speech sound disorder (RSSD).
 - Children with RSSD participated in our previous biofeedback speech therapy studies.
- Corpus combines four studies that differ in head-transducer alignment techniques.
- Current classification is on perceptually accurate data only (69 speakers, 2,385 utterances)
 - Tongue shape coding for perceptually inaccurate utterances is in progress.
- Total corpus size compares favorably to previous multimodal child speech corpora^[10].

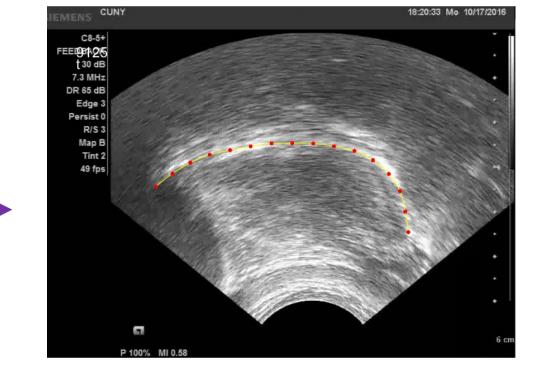

DATA PREPARATION & ANNOTATION

Preparation:

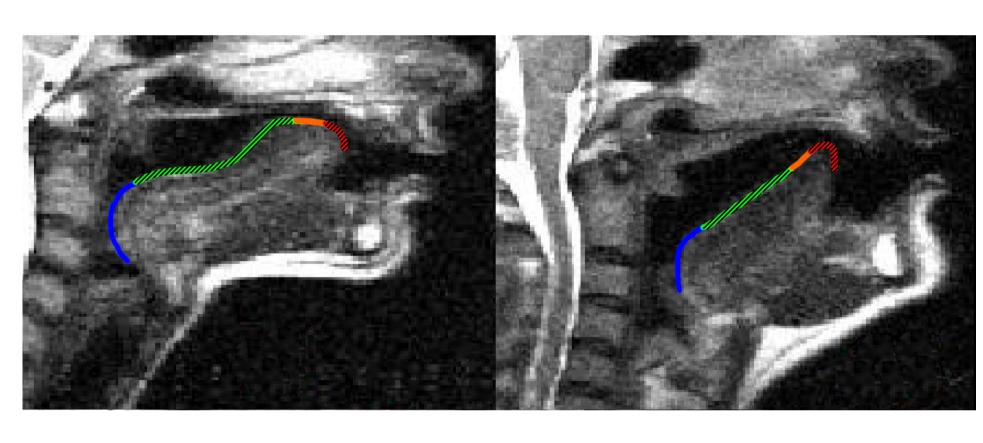
 Original MP4 and MKV screenrecorded files converted to lossless WAV and MP4 (H.264 + MP3).

retroflex shapes)[11-13].

- Praat^[17] TextGrid files created with orthographic transcriptions for all audio.
- Montreal Forced Aligner^[18] and PERCEPT pre-trained acoustic model v 3.0^[19] used to segment phone boundaries.
 - Hand correction of boundaries where needed.



Transcription and Segmentation


Ground Truth Ratings

Perceptual accuracy from expert and/or crowdsourced listeners^[22].

Ground Truth Coordinates

Traced frames within /ɹ/
intervals using the MATLAB
program *GetContours*^[20-21].

Ground Truth Tongue Shape Classification

Flowchart from ^[24] used to classify tongue shapes for /ɹ/ into five categories, subsequently collapsed to bunched (tip down) versus retroflex (tip up) variants.

F4 mean Hz by Tongue Shape and Phonetic Context

CORPUS DEMONSTRATION

Does binary tongue shape variant (bunched-retroflex) predict mean F3-F5 Hz in the subset of the English /ɹ/ syllable task with ground truth labels for both perceptual ratings and tongue shape variant?

Acoustic Measurement:

- Adapted the Voweltine script^[28] to select best formant settings per token/speaker and measure F1-F5
- Extracted mean Hz value from the steadiest 25 milliseconds

Analysis:

- Outliers excluded (1,966 paired observations)
- 3 Mixed-effects linear regression models [29-34] lmer(f3meanhz ~ tongueshape_binary * (onset + vowel_binary) + Sex * Age + group + (1 + onset + vowel_binary | participant) + (1 | word)

Front Vowel Adoption Tongue Shape Non-front Vowel Done Non-onset Syllable Position (Binary)

F3 tongue shape differences by vowel context.

- Significant effect of vowel context (p < 0.001) with F3 lowering in non-front vowel contexts.
- Significant interaction between tongue shape variant and vowel context (p < 0.01) where non-front vowels + retroflex shape resulted in higher F3.

3900 - 3800 - 3700 - 36

Retroflex tongue shapes have lower F4 Hz values.

Tongue Shape (Binary)

bunched

retroflex

retroflex

Significant effect of tongue shape (p<0.02);

bunched

• Significant effect of vowel context (p= 0.01).

CONCLUSIONS & FUTURE DIRECTIONS

Conclusions:

- Acoustic differences between tongue shape variants must be considered in relation to syllable position and vowel context!
 - Statistically significant findings for F3 and F4, but not F5.
 - Lower average F4 mean Hz in retroflex shapes aligns with previous work. [11-13]

Future Directions:

- Ground Truth labelling of perceptually inaccurate /」/
- Releasing the corpus
- Developing the acoustic classifier

This research was supported by NIH NIDCD:
F31DC022514 (PI: Eads)
F31DC018197 (PI: Kabakoff)
R01DC013668 (PI: Whalen)
R01DC017476 (PI: McAllister).
Additional support provided by the American Speech-Language-Hearing Foundation, the Acoustical Society of America, and the Council of Academic Programs in

Communication Sciences and Disorders.

If you have any questions and/or feedback, please contact Amanda Eads at are326@nyu.edu